
CrashJS: A NodeJS Benchmark for Automated Crash
Reproduction

Philip Oliver
philip.oliver@vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

Jens Dietrich
jens.dietrich@vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

Craig Anslow
craig.anslow@ecs.vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

Michael Homer
michael.homer@vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

ABSTRACT
Software bugs often lead to software crashes, which cost US compa-
nies upwards of $2.08 trillion annually. Automated Crash Reproduc-
tion (ACR) aims to generate unit tests that successfully reproduce a
crash. The goal of ACR is to aid developers with debugging, provid-
ing them with another tool to locate where a bug is in a program.
The main approach ACR currently takes is to replicate a stack trace
from an error thrown within a program. Currently, ACR has been
developed for C, Java, and Python, but there are no tools targeting
JavaScript programs. To aid the development of JavaScript ACR
tools, we propose CrashJS: a benchmark dataset of 453 Node.js
crashes from several sources. CrashJS includes a mix of real-world
and synthesised tests, multiple projects, and different levels of com-
plexity for both crashes and target programs.

KEYWORDS
Automated Crash Reproduction, Benchmark, Data Collection, Dataset,
Software Testing, Test Generation

ACM Reference Format:
Philip Oliver, Jens Dietrich, Craig Anslow, andMichael Homer. 2024. CrashJS:
A NodeJS Benchmark for Automated Crash Reproduction. In 21st Interna-
tional Conference on Mining Software Repositories (MSR ’24), April 15–16,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3643991.3644912

1 INTRODUCTION
‘Program testing can be used to show the presence of bugs, but
never to show their absence.’ Dijkstra’s famous quote implies that
while testing can show that a program is buggy, it cannot show that
no bugs exist [11]. Bugs show themselves in several manners, with
one of the more destructive being software crashes. Bugs that lead

The work of the second author was supported by a gift from Oracle Labs Australia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR 2024, April 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04. . . $15.00
https://doi.org/10.1145/3643991.3644912

to software crashes can occur in many ways, from incorrect code to
changes to dependencies, and security vulnerabilities. Crashes are a
significant cost to companies; the Consortium for Information and
Software Quality reported in 2021 that crashes cost US companies
more than $2.08 trillion annually [1]. Crashes typically result in
some form of post-crash data being saved to allow for debugging,
this often takes the form of a stack trace. While developers can use
this information to debug the crash, it can often take a significant
amount of the developers’ time to isolate and fix the cause of the
crash.

Automated Crash Reproduction (ACR) is a relatively new idea
within software engineering, which aims to reproduce the cause of a
crash, allowing developers another point of reference to understand
why a crash is occurring. The reproductions from ACR tools (a tool
that aims to reproduce a crash based on limited input) usually take
the form of a unit test, which can be included within the test suite
for the crashing software as a regression test to ensure the bug
is not reintroduced in later versions of the software. In the last
few years, several tools have been created that focus on software
crash reproduction. The majority of these tools target statically
typed languages such as Java or C for their crash reproductions [8,
13, 25, 33], with a notable exception: Beacon, which targets the
dynamically typed language Python [4]. However, to the best of our
knowledge, there currently are no ACR tools targeting JavaScript.
An issuewe have identified in the ACR space is the lack of consistent
benchmark datasets to allow direct comparison between existing
and forthcoming ACR tools. As identified by Tempero et al., datasets
that allow reproducible studies and ease of comparison between
similar analyses are crucial for the future of empirical software
engineering [38].

In this paper, we present CrashJS: a first-of-its-kind benchmark
of 453 Node.js crashes collected from multiple sources, some of
which have been collected using a novel technique of extracting
crashes from test generation tools. We believe the existence of
CrashJS will be crucial for the development and evaluation of new
JavaScript tools for ACR and will allow for easier comparisons
and development of research within this area. Furthermore, due to
the lack of high-quality GitHub crashes for JavaScript, we present
several novel techniques for utilising existing tools for JavaScript
to extract crashes (BugsJS, SecBench.js, Syntest-JavaScript). The

https://orcid.org/0000-0003-2989-8478
https://doi.org/10.1145/3643991.3644912
https://doi.org/10.1145/3643991.3644912
https://doi.org/10.1145/3643991.3644912

MSR 2024, April 2024, Lisbon, Portugal Oliver, et al.

contributions this paper presents are: the CrashJS benchmark, arti-
fact, analysis, and a novel approach to extracting crashes from test
generation tools.

2 EXISTING BENCHMARKS
Benchmarks and datasets exist in many forms and for many pur-
poses within software engineering with new datasets published
continually. At MSR 2023 alone, 22 papers were accepted in the
Data and Tool Showcase Track across many areas. Some of these
datasets focus on testing various aspects of software [2, 7, 20, 21,
26, 28, 31], others focus on aspects of the software development
lifecycle [3, 9, 17, 22–24, 27, 36, 42, 43], and others look at aspects
of Artificial Intelligence and Machine Learning [18, 39, 40]. Aside
from these new datasets, several older, more established datasets
include the Qualitas Corpus [38], Da Capo [6], the Software-artifact
Infrastructure Repository [14], and Defects4J [19], among others.

Currently, there are few benchmarks for ACR tools. A particu-
lar issue in this area is that separate benchmarks must be created
for different programming languages. An ACR tool targeting Java
cannot use a benchmark for JavaScript, for example. In this sec-
tion, we discuss several benchmarks for ACR and some JavaScript
benchmarks for other purposes such as test generation and security
vulnerability analysis.

2.1 Java Benchmarks
We identified three main benchmarks used for Java ACR tools. Only
one of these benchmarks (JCrashPack) was created as a benchmark
to be used for comparisons by different tools.

STAR is an ACR tool proposed by Chen and Kim to tackle two
main issues with other crash-reproduction techniques: path ex-
plosion and object creation [8]. STAR was evaluated on a set of
52 crashes from Apache Commons Collections (ACC), Apache
ANT, and Apache Log4J. 12 of these crashes are from ACC, 20
from ANT, and 20 from Log4J. STAR was able to exploit 31 of
the 52 crashes, with 22 of these being considered useful for re-
vealing the bugs. Challenges discovered for reproducing crashes
were identified as reliance on environmental dependencies (36.7%
of unreproducible crashes), SMT solver limitations (23.3%), con-
currency and non-determinism (16.7%), path explosion (6.7%), and
other challenges such as reflection (10%). These challenges are all
areas for further work. Furthermore, STAR is restricted by the
type of exception thrown, with no support for crashes such as
ClassNotFoundException or InterruptedException.

Several tools have been evaluated using the STAR benchmark.
In 2017, Soltani et al. presented EvoCrash, an evolutionary tool that
leverages a stack trace to reduce the search space [34]. EvoCrash re-
produces crashes for the Java programming language. To reproduce
crashes, EvoCrash uses a guided genetic algorithmwith a custom fit-
ness function developed by Soltani et al. and uses EvoSuite as an en-
gine to run an evolutionary search and to generate tests [15, 33, 34].
EvoCrash replicated 41 of 50 (82%) crashes from Apache Commons
Collections (ACC), Apache Ant (ANT), and Apache Log4j [34] from
the STAR dataset. MuCrash, another Java ACR tool uses only the
ACC crashes from the STAR benchmark [41].

Nayrolles et al. selected 20 crashes to evaluate JCHARMING.
These crashes were selected from Apache ANT, ArgoUML, Dns-
java, JfreeChart, Apache Log4J, Mission Control Technologies, and
PDFBox. The authors state that the crashes were randomly selected
to avoid the introduction of bias but include no further information
as to where or how the crashes were selected, beyond ensuring that
the exception matches a regular expression the authors constructed
to ensure only stack traces were collected.

In 2020, Soltani et al. introduced JCrashPack, a set of 200 Java
crashes, and evaluated EvoCrash on these crashes [32]. JCrashPack
is comprised of crashes from several projects:Apache commons-lang,
Apache commons-math, Closure compiler, ElasticSearch, Joda-Time,
Mockito, and XWiki. EvoCrash successfully reproduced 87 of 200
(43.5%) from the benchmark JCrashPack.

Another tool, Botsing, uses JCrashPack for its evaluation. Bots-
ing, like EvoCrash, is a search-based crash reproduction tool for
the Java programming language built on top of EvoSuite [13]. Der-
akhshanfar et al. identified the work of Soltani et al. [35] as showing
the ability of evolutionary search for crash reproduction. Botsing
uses an evolutionary search to produce a test case that replicates the
crash behaviour. In addition to the random nature of mutation and
crossover inspired by EvoCrash, Botsing also implements seeding
mechanisms. These mechanisms seed object and method calls based
on existing tests and models of classes using test seeding and be-
havioural model seeding. Botsing was evaluated on JCrashPack [32]
and achieved successful reproduction of 66 of the 124 (53.2%) crashes
without the use of the seeding strategies and 70 (56.5%) with the
model and test seeding mechanisms. In Derakhshanfar’s PhD thesis,
they discuss that all the ElasticSearch crashes had been excluded
as Botsing was unable to perform the dynamic analysis while exe-
cuting the ElasticSearch crashes [12]. It is stated that this occurred
due to “the technical difficulty of running ElasticSearch tests by the
EvoSuite test executor.” Including the ElasticSearch tests, Botsing
is capable of reproducing 33% of JCrashPack. As both EvoCrash
and Botsing were evaluated on JCrashPack, a direct comparison of
these tools can be made, with EvoCrash reproducing 87 out of 200
crashes, while Botsing could reproduce 70 of the 200 crashes.

2.2 Python Benchmarks
There is currently only one tool for ACR which targets the Python
language. Beacon was proposed as an adaptation of the approach
EvoCrash uses for ACR [4]. While Beacon does not use a specific
benchmark it is, to the best of our knowledge, the only tool cur-
rently performing ACR for a dynamically typed language. Bergel
and Muñoz used only three crashes to assess Beacon [4]. The first
crash uses only the Python standard library, the second NumPy,
and the third PyYAML. The first crash is described as an erroneous
list extension. This crash has a function that should return a value;
however, the crash returns the Python type 𝑁𝑜𝑛𝑒 , which leads to
an 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟 . The second crash is thrown when a buffer is
incorrectly used through a buffer size that is too small, or a buffer
size that is not a multiple of 16. The final crash is a 𝑆𝑐𝑎𝑛𝑛𝑒𝑟𝐸𝑟𝑟𝑜𝑟
which is thrown when a string in a YAML document starts with
an ampersand (&) and is not a correct reference. Beacon also re-
quires the message from this crash to contain “while scanning
an anchor,” making this crash more specific than just looking for

CrashJS: A NodeJS Benchmark for Automated Crash Reproduction MSR 2024, April 2024, Lisbon, Portugal

the 𝑆𝑐𝑎𝑛𝑛𝑒𝑟𝐸𝑟𝑟𝑜𝑟 . The evaluation was performed 32 times with a
population size of 64. When evaluated, Beacon could effectively
reproduce the first two crashes, with 93.75% and 100% accuracy
in 105.31ms and 149.04ms, respectively. The PyYAML crash was
significantly harder for Beacon, with 71.88% accuracy in 9043.39ms.

2.3 JavaScript Benchmarks
There are currently no benchmarks for ACR in JavaScript. The
following two benchmarks are for bug analysis and test generation
tools [16, 37]. The third benchmark is a collection of real-world
vulnerabilities within JavaScript packages [5]. All of these bench-
marks are unsuitable in their current state for ACR as they do not
contain crashes or stack traces produced by crashes. These three
tools are leveraged in the creation of the CrashJS benchmark.

BugsJS was presented by Gyimesi et al. in 2019 as a benchmark
of 453 JavaScript bugs, fixes, and test suite updates [16]. These bugs
were collected from 10 Node.js projects that use the Mocha testing
framework. The 10 projects used in BugsJS are Bower, Eslint, Ex-
press, Hessian.js, Hexo, Karma, Mongoose, Node-Redis, Pencilblue,
and Shields. Gyimesi et al. selected these projects as they had the
highest star count on GitHub, were server-side Node.js projects
with a large number of commits and were actively maintained.
Projects were selected only when bug reports were included in
issue tracking on GitHub.

For each project, Gyimesi et al. selected bugs from the list of
closed issues where there is a link between the issue and a bug-
fixing commit. For these issues, only those that had test changes
present were included. The resulting issues were then assessed
against criteria set out by Gyimesi et al: isolation, complexity, de-
pendency, relevant changes, and refactoring. These criteria ensure
that patches in BugsJS are high quality but not so complex as to
require much domain-specific knowledge to fix. From an original
list of 795 commits, the authors used these criteria to reduce the
list to 542. Finally, the authors used dynamic validation to ensure
that at least one of the tests added in the patched version fail when
executed on the buggy version of the code. After this analysis, the
list of bugs was further reduced to the 453 included in BugsJS.

Syntest-JavaScript is an automated test generation tool for
JavaScript and TypeScript programs [37]. Similar to tools such as
EvoSuite [15], Syntest-JavaScript aims to maximise code coverage
as its main goal. Stallenberg et al. constructed a dataset of 98 units
under test for Syntest-JavaScript. Five JavaScript projects with high
star counts were selected from GitHub: Commander.js, Express,
Moment.js, Javascript Algorithms, and Lodash. The criteria for
inclusion in the Syntest-JavaScript benchmark were that the unit
must be exported and the unit must have a Cyclomatic Complexity
greater or equal to 2, as calculated by Plato1. The authors also noted
that two files in Commander.js would terminate the process and
had to be excluded from the benchmark as they would exit the
testing tool.

Bhuiyan et al. presented SecBench.js in 2023 as a server-side
JavaScript dataset for security vulnerabilities [5]. The authors de-
scribe the need for a successful benchmark to be realistic, executable,
two-sided, and vetted (or confirmed). A two-sided vulnerability
means the item in the benchmark contains the vulnerable and fixed

1https://github.com/es-analysis/plato

versions of the vulnerability. This requirement allows confirmation
of detection and mitigation tools and further insight into how vul-
nerabilities are fixed. Bhuiyan et al. collected 600 vulnerabilities
from Snyk, GitHub Advisories, and Huntr.dev. The vulnerabilities
collected fall into 5 categories: code injection (40), command in-
jection (101), path traversal (169), prototype pollution (192), and
ReDoS (98). Code injection allows arbitrary code execution while
command injection allows arbitrary CLI commands to be executed.
Path traversal allows an arbitrary path in the file system to be read.
Prototype pollution allows attributes to be added or modified on
prototypes such as the built-in JavaScript Object class. Finally, Re-
DoS vulnerabilities use regular expressions which take a long time
to execute, thus overloading system resources and causing a denial
of service. The 600 vulnerabilities in SecBench.js are represented
as executable Jest test cases. These test cases are executed on the
target units and show the presence of the vulnerabilities.

Table 1: Existing Benchmarks

Benchmark Language Purpose Size
STAR Java ACR 52

JCHARMING Java ACR 20
JCrashPack Java ACR 200
Defects4J Java Bug Detection 750
Beacon Python ACR 3
BugsJS JS Bug Detection 453

Syntest-JS JS Test Generation 98
SecBench.js JS Security Vulnerabilities 600
CrashJS JS ACR 453

3 CRASHJS
We propose CrashJS: a benchmark of 453 Node.js crashes specifi-
cally collected for use by tools for ACR, consisting of crashes from
four primary locations: GitHub2, BugsJS [16], SyntestJavaScript [37],
and SecBench.js [5]. 71 crashes are collected from GitHub, 90 from
BugsJS, 275 from Syntest-JavaScript, and 17 from SecBench.js. The
CrashJS artifact including crashes, collection scripts, and analy-
sis scripts can be found at https://zenodo.org/doi/10.5281/zenodo.
10530514 [30].

3.1 Collection Method
To create a suitably sized benchmark of crashes, we have used four
main approaches. The first of these approaches is to collect crashes
from issues on popular GitHub projects. The second is to use BugsJS,
a benchmark of JavaScript bugs collected by Gyimesi et al. [16].
Thirdly, we leveraged reported JavaScript security vulnerabilities
from Secbench.js [5]. Finally, we collected stack traces from the
tool Syntest-Javascript presented by Stallenberg et al. [37]. For
SecBench.js and Syntest-JavaScript crashes we have included the
test case which generated the error. This will allow users of CrashJS
to compare generated test cases to the initial cause of the error, thus
providing an oracle and an opportunity to assess the usefulness of
generated test cases.
2https://github.com

https://zenodo.org/doi/10.5281/zenodo.10530514
https://zenodo.org/doi/10.5281/zenodo.10530514

MSR 2024, April 2024, Lisbon, Portugal Oliver, et al.

There are several steps involved in collecting each crash from
GitHub. The initial step is selecting projects on GitHub from which
to collect crashes. Projects under the JavaScript topic with the
main language identified as JavaScript were explored. The resulting
projects were sorted by the number of stars, GitHub’s in-built mea-
sure of popularity. This GitHub search can be reproduced using this
URL: https://github.com/topics/javascript?l=javascript&o=desc&
s=stars. Projects from this search that are client-side JavaScript
frameworks or tools, such as React, Vue, and Bootstrap were ex-
cluded as these projects are built to run on web browsers, rather
than Node.js. Once projects were selected, we searched through the
issue trackers for these projects. When selecting issues, we used
closed issues only and sorted these by most recent. This allowed us
to confirm if these issues were relevant to the project, as decided
by the moderators’ comments. Using recent issues ensured that
finding the correct version of the project (if it was not provided),
and required dependencies was significantly easier. In some cases,
manual verification of project and dependency versions was re-
quired. This involved cross-referencing functions and line numbers
present in the crash stack trace with the code in multiple versions of
dependencies to find the versions which matched the stack traces.
As we collected crashes for ACR tools, most of which require a
stack trace, we collected only issues including a stack trace. Table 2
provides a summary of the total number of crashes collected for
each GitHub project.

Table 2: Crashes Collected from GitHub

GitHub Project No. Crashes Collected
atom3 17
eslint4 9
express5 13

http-server6 9
node7 11

standard8 3
webpack9 9

The BugsJS benchmark contains several scripts to checkout de-
pendencies from GitHub and run tests for the bugs included in the
benchmark. The tests are run using the Istanbul test runner and re-
sults are collected and stored in a JSON file. The process we used for
discovering and collecting crashes from BugsJS follows: Running
the tests in BugsJS required the use of an older version of Node to
ensure these ran correctly; we used Node v14.17.4. First, the tests
for the buggy versions of each bug were run to create JSON files
containing information about the test executions. These resulting
JSON files include test failures and errors that were encountered
while running the tests. We also saved the package.json file for
each test so we could extract dependency versions and other in-
formation about each project for analysis and to create the crash
files discussed in Section 3.1. These generated JSON files contained
3https://github.com/atom/atom
4https://github.com/eslint/eslint
5https://github.com/expressjs/express
6https://github.com/http-party/http-server
7https://github.com/nodejs/node
8https://github.com/standard/standard
9https://github.com/webpack/webpack

the errors encountered when running the BugsJS tests. We wrote a
script to extract these stack traces from the generated JSON file to
run deduplication on these crashes and to reformat them into the
format from Listing 1 for CrashJS. We also copied code directories
which might be required in reproducing the crash. For example,
some of the crashes for Express occur in files in a folder called test.
This folder is not included in a production build of Express, so we
decided to include these files so the main project and dependencies
can be downloaded by ACR tools using the NPM package man-
ager. Finally, the created log, crash, and test files were added to the
CrashJS dataset. The scripts for this collection can be found in the
CrashJS artefact.

Aside frommanually collecting crashes fromGitHub, SecBench.js
was the most time-consuming and difficult origin for collecting
crashes. This was mostly in part due to each vulnerability within
SecBench.js being individually represented by a Jest test case. These
test cases required modification to produce an error which could be
used as a target for ACR. Of the 5 vulnerability classes represented
in SecBench.js (code injection, command injection, path traversal,
prototype pollution, and ReDoS), we were successful in creating
crashes in code injection vulnerabilities.

Table 3: Crashes Collected from SecBench.js

SecBench.js Project No. Crashes Collected Version(s)
access-policy 1 3.1.0

json-ptr 1 2.0.0
kmc 1 1.2.2
m-log 1 0.0.1
mathjs 2 3.9.0, 3.10.3
modjs 1 0.4.0

modulify 1 0.1.0
mol-proto 1 0.1.3

mongoosemask 1 0.0.6
node-extends 1 0.2.0
node-rules 1 3.0.0

node-serialize 1 0.0.3
realms-shim 1 1.1.0
serialize-to-js 1 0.5.0

thenify 1 3.3.0
underscore 1 1.13.0

Command injection vulnerabilities directly call CLI commands
external from the executing JavaScript program. As this attack is
occurring externally, we do not consider it possible to create a crash
from these vulnerabilities. An approach we attempted was to kill
the JavaScript test from the CLI; however, this approach does not
produce a stack trace and thus has been excluded from CrashJS.

Path traversal vulnerabilities don’t call code, as they are focused
on accessing files on a file system external to the JavaScript exe-
cution. Due to this, we cannot extract stack traces and therefore
crashes from these vulnerabilities, so path traversal vulnerabilities
have been excluded from CrashJS.

Prototype pollution vulnerabilities can lead to arbitrary code ex-
ecution and could be used for extracting crashes. However, crashes
for these vulnerabilities require an error to be inserted into the

https://github.com/topics/javascript?l=javascript&o=desc&s=stars
https://github.com/topics/javascript?l=javascript&o=desc&s=stars
https://github.com/atom/atom
https://github.com/eslint/eslint
https://github.com/expressjs/express
https://github.com/http-party/http-server
https://github.com/nodejs/node
https://github.com/standard/standard
https://github.com/webpack/webpack

CrashJS: A NodeJS Benchmark for Automated Crash Reproduction MSR 2024, April 2024, Lisbon, Portugal

modified prototype function and then called separately. The stack
traces which occur only contain stack frames which are testing
framework setup functions and functions from the test itself. No
frames from the dependency which contains the vulnerability are
present in the stack trace. It was concluded that these stack traces
would not be useful in CrashJS as they do not aim for a depen-
dency to be tested by an ACR system and so prototype pollution
vulnerabilities have been excluded from CrashJS.

ReDoS vulnerabilities do not create stack traces as they aim to
create long-executing processes. As these vulnerabilities simply
overload system resources and do not produce errors, they have
been excluded from CrashJS.

Only code injection vulnerabilities are included in CrashJS. To
extract stack traces from these tests, we modified the line of each
test which writes a file to the filesystem to instead throw an error.
The code injection tests were then run and the errors were collected,
along with the dependencies and versions to be included in CrashJS.
Using this method, we collected 17 code injection crashes from
SecBench.js to include in CrashJS.

To the best of our knowledge, the method used here for collecting
crashes from Syntest-JavaScript is novel. We have manipulated the
coverage-driven test generation tool to output stack traces of errors
it encounters in the test generation process.

The first of the steps to collect crashes from Syntest-JavaScript
was to select the benchmark on which to run the tool. We se-
lected the Syntest-JavaScript-Benchmark project from the Syntest-
Framework project on GitHub as of 10 October 2023. This bench-
mark consists of projects specifically chosen for evaluating Syntest-
JavaScript by generating tests using code coverage as a metric. To
collect crashes from the Syntest-JavaScript benchmark, wemodified
Syntest-JavaScript to collect and save stack traces that occurred
while the tool was improving coverage during its test case gen-
eration. This simply involved printing out any errors that were
encountered by the test runner with some surrounding lines to al-
low for easy identification of where these errors were in the output
file. We also printed the test code which led to the error so that
the test file could be included in CrashJS. Another modification we
made was to add retainLines: true to the Babel configuration
for Syntest. This change means that when the system under test is
instrumented the instrumenter will output code on the same line as
the original file, ensuring that the line numbers in the stack traces
will match between the original and instrumented versions of the
code. We modified several variables within the .syntest.json
configuration file to reduce the time taken to extract crashes. The
variables we specified were: search-algorithm: MOSAFamily,
objective-manager: simple, crossover: javascript-tree,
procreation: default, sampler: javascript-random,
total-time: 600, search-time: 600, and iterations: 20.

Crashes randomly generated by Syntest-JavaScript are useful
for JS automated crash reproduction because, while the tests gener-
ated by Syntest-JavaScript are synthetic, the crashes they produce
are real. In the fuzzing area of software engineering research, this
approach is typically used to ensure that areas of the codebase that
are rarely covered are still explored and tested. This is useful for
JavaScript, in particular, where cultural factors can result in crashes
within system boundaries which may not have a direct impact
on execution being disregarded as client error [29]. Furthermore,

the deep and complex dependency graphs produce many internal
subsystem boundaries where unexpected interactions can be unde-
tected [10]. For example, some crashes in Java benchmarks result
from nullable-by-default APIs where methods can accept a null
value but do not have any form of checking for null, thus resulting
in a crash on well-typed input data. In JavaScript, this could be
interpreted as a violation of an implicit not-null invariant and thus
would be regarded as user error (violated preconditions), rather
than a reportable bug. This results in a selection bias against these
types of bug reports for JavaScript as they are not reported. How-
ever, these bugs are still valid errors and more complex assumed
or implicit preconditions are also widespread. Syntest-JavaScript
produces these sorts of crashes, which should still be considered
by an automated crash reproduction tool for use in development
environments where a developer may violate these implicit require-
ments but not be alerted to it by an IDE or other tool. These inputs
may be valid from a library API but be violations specified in the
documentation or assumed within the library, thus resulting in
a crash. While Syntest-JavaScript crashes may be trivial for ACR
tools to reproduce, more metrics can be used than just the crash
being reproduced. For example, users of CrashJS could identify the
number of evolutionary epochs required to reproduce any given
crash. This metric could be used to tune an ACR tool to improve
the time taken to find a crash compared to Syntest-JavaScript. Each
collection of crashes within the dataset is separate from the others,
so developers of future ACR tools can include or exclude particular
collections of crashes within CrashJS at their discretion.

3.2 Deduplication
The deduplication performed on the crashes present in BugsJS was
critical in reducing the number of crashes within CrashJS to a man-
ageable number. Our deduplication strategy is as follows: Firstly,
identify if a stack trace is the same as one previously encountered.
This stack trace matching would discard test fixture setup infor-
mation from the comparison, as this information is irrelevant to
the actual crash. Matching occurred line-by-line to ensure each
line of the stack trace occurred in the same code file, on the same
line, and at the same character within that line. If the stack trace
matches one already present, the error line (error type and error
message) was added to a set to ensure duplicate error lines were
removed. The results of this deduplication were printed to a JSON
file as each stack trace with a list of error lines for each project so
that manual verification could occur. We then manually checked
each stack trace to remove further duplicates of error lines. The
only error lines we removed manually were error messages where
a particular value was present in the error message. For example,
if a string was expected at a particular point of the program but
received an integer, the error message might include the value of
that integer. If multiple integers are inputted at that point of the
program there could be multiple instances of the same error but
with different integer values. These cases were removed so there
was only one instance of these errors. We selected instances of the
duplicated crashes with the simplest values; for example, if there
was a long integer and a single-digit integer we kept the single-digit
integer. Once the JSON files with the stack trace and error lines
had been pruned manually, we then ran a script to transform this

MSR 2024, April 2024, Lisbon, Portugal Oliver, et al.

information into the crash and log files by combining each stack
trace with all the remaining error lines for that stack trace to create
multiple crashes. For example, if there was one stack trace with
five error lines, this would result in five crashes. Table 4 shows the
results of the crash extraction, the significant reduction in the num-
ber of crashes after deduplication, and the final number of crashes
collected for each project (excluding Pencilblue) from BugsJS.

Table 4: Crashes Collected from BugsJS

Proj Coll Auto Dedup Man Dedup % Decr
eslint4 4,595 88 52 98.9%
express5 128 15 15 88.3%
hexo10 140 20 20 85.7%

pencilblue11 3 3 3 0%
Total 4,866 126 90 98.2%

When performing deduplication for the BugsJS dataset, we con-
sidered calculating the Cyclomatic Complexity Number (CCN) for
each duplicated crash and selecting the least complex option. Ini-
tially, it does not seem that crashes with the same stack trace would
have different complexities. However, while the line numbers for
each frame within the stack trace remain the same, other files
within the target project could have changed, thus changing the
complexity of the program. We decided not to implement this met-
ric due to the processing time to calculate this for every extracted
crash, and the overall low impact on the resulting crashes. As will
be seen in the following sections and figures, the CCN for each
project varies little and the variation already present in the dataset
is sufficient to provide a comprehensive benchmark for JavaScript
ACR tools. This does not apply to the Syntest-JavaScript dataset, as
all crashes extracted from each project are from the same version
of the project.

We performed the same deduplication strategy on the crashes
collected from Syntest-JavaScript as we did for BugsJS. Due to the
evolutionary nature of the approach Syntest-JavaScript uses to gen-
erate tests, the total number of tests generated and errors extracted
was significantly higher than any of the other approaches used in
this paper. Table 5 shows the results of the crash extraction, the
significant reduction in the number of crashes after deduplication,
and the final number of crashes collected for each project from
Syntest-JavaScript.

Table 5: Crashes Collected from Syntest-JavaScript

Project Coll Auto Dedup Man Dedup % Dec
commanderjs12 5,521 66 38 99.3%

express5 11,992 353 86 99.3%
js-algorithms13 32,752 145 54 99.8%

lodash14 2,571 11 11 99.6%
moment15 26,238 130 86 99.7%

Total 79,074 705 275 99.7%

10https://github.com/hexojs/hexo
11https://github.com/pencilblue/pencilblue

3.3 Benchmark Format
For all crashes, stack traces are collected and stored in a log file,
while other information about each crash is stored in a JSON file.
The JSON files follow a standard format described by the Type-
Script interface model in Listing 1. Information about each crash
collected includes the issue number, issue title (info), URL, the ver-
sion number of the tool, an optional version for Node.js, and an
object of dependency names to versions for other dependencies. If
a crash is collected from GitHub, the issue number is the number
of the GitHub issue from where the crash was collected, otherwise,
it is a unique identifier for the crash within the source from which
the crash was collected. For GitHub crashes, the URL links to the
GitHub issue.

Several options for dependency management are allowed within
the crash file. The first option is the NPM version of the software
from where the crash comes. This option is used in conjunction
with the requireCrashDependency option, which informs an ACR
tool if it should download the crash target project as a depen-
dency. For example, an Express crash will require Express as a
dependency, so an ACR tool should install the version of Express
identified in version. In contrast, an Atom crash will not require
Atom as an NPM dependency (as it is a standalone tool); therefore,
requireCrashDependency can be set to false and the ACR tool
can ignore the project as a dependency. The nodeVersion option
allows specification of a version of Node to use when running the
crash; This ensures that if an ACR tool requires matching between
line numbers of Node functions, these will be correct. The setup
object offers options to copy files between locations or to download
and extract files from a URL. These options allow for crashes that
have dependencies not within an NPM repository (such as whole
applications like Atom) to be analysed.

For example, Listing 2 shows the JSON file for the Atom-22699
crash. As can be seen, a link to the original GitHub issue is provided
along with version numbers. The setup object is used to download
Atom at version 1.57.0 as a tar.gz and the type of compression so
the archive file can be extracted.

4 ANALYSIS
We have analysed several aspects of the crashes in CrashJS. Among
these analyses, we have looked at the complexity of the crashes col-
lected, the complexity of the target programs, and the distribution
of the types of errors within CrashJS. Crashes from three of our
sources (BugsJS, GitHub, Secbench.js) are real-world crashes, while
crashes from Syntest-JavaScript are synthetic crashes but generated
using a coverage-based testing tool on real-world programs.

4.1 Crash Complexity
In collating CrashJS, we aimed to have a variety of crash complexity
so that ACR tools can gain insights into how the tools perform on a
variety of programs and complex crashes. Tables 6, 7, 9, and 8 show
the results of analysis of the stack traces for each source of crashes
in CrashJS. The tables present the number of stack traces (st), total

12https://github.com/tj/commander.js
13https://github.com/trekhleb/javascript-algorithms
14https://github.com/lodash/lodash
15https://github.com/moment/moment

https://github.com/hexojs/hexo
https://github.com/pencilblue/pencilblue
https://github.com/tj/commander.js
https://github.com/trekhleb/javascript-algorithms
https://github.com/lodash/lodash
https://github.com/moment/moment

CrashJS: A NodeJS Benchmark for Automated Crash Reproduction MSR 2024, April 2024, Lisbon, Portugal

1 {
2 "issueNumber": number;
3 "info": string;
4 "url"?: string;
5 "version": string;
6 "nodeVersion "?: string;
7 "dependencies": {
8 ["dependencyName": string]: string;
9 };
10 "seeded "?: boolean;
11 "requireCrashDependency "?: boolean;
12 "setup"?: {
13 "copy"?: {
14 "from": string;
15 "to": string;
16 },
17 "download "?: {
18 "url": string;
19 "unpack": string;
20 }
21 };
22 }

Listing 1: Object Definition for Collected Crash

1 {
2 "issueNumber": 22699,
3 "info": "Uncaught Error: ENOENT: no such

file or directory, stat '$ATOM_HOME/
packages \\atom -autocomplete -py...",

4 "url": "https:// github.com/atom/atom/
issues/22699",

5 "version": "1.57.0",
6 "dependencies": {
7 "electron": "9.4.4"
8 },
9 "setup": {
10 "download": {
11 "url": "https:// github.com/atom/atom/

archive/refs/tags/v1.57.0.tar.gz",
12 "unpack": "tar.gz"
13 }
14 }
15 }

Listing 2: JSON File for Atom-22699 Crash

number of stack frames (fr), average number of frames per stack
trace (fr), and standard deviation (𝜎) for different types of errors
and the overall totals. 5 specific errors (excludes Error) are shown:
TypeError (TE), AssertionError (AE), RangeError (RE), SyntaxError
(SE), and YAMLException (YE). These errors are only present in the
tables if there are any crashes for that type of error. For example,
Table 6 does not include SyntaxError, as there are none in the BugsJS
dataset within CrashJS. The total number of errors by different type

are shown in Table 10; the most common error is TypeError, with
308 errors, mostly occurring in the Syntest-JavaScript dataset.

The BugsJS dataset contains the most complex crashes, in the
Express project, which has an average of 54 frames per crash. How-
ever, the BugsJS dataset also contains the least complex crashes,
in the Eslint project, which has an average of 3 frames per crash.
Interestingly, the standard deviation for BugsJS crashes within each
project is 0; this shows that for each project, every stack trace has
the same number of frames: 3 for Eslint, 52 for Express, 16 for Hexo,
and 4 for Pencilblue. The overall average for BugsJS crashes is 14.4
frames per crash, which indicates a reasonably high complexity for
the BugsJS dataset within CrashJS.

Table 6: BugsJS Crash Statistics

Project TE AE YE Other Total
eslint st 2 35 3 12 52

fr 6 105 9 36 156
fr 3.0 3.0 3.0 3.0 3.0
𝜎 0.0 0.0 0.0 0.0 0.0

express st 6 5 0 4 15
fr 324 270 0 216 810
fr 54.0 54.0 0 54.0 54.0
𝜎 0.0 0.0 0.0 0.0 0.0

hexo st 11 8 0 1 20
fr 176 128 0 16 320
fr 16.0 16.0 0 16.0 16.0
𝜎 0.0 0.0 0.0 0.0 0.0

pencilblue st 0 3 0 0 3
fr 0 12 0 0 12
fr 0 4.0 0 0 4.0
𝜎 0.0 0.0 0.0 0.0 0.0

Total st 19 51 3 17 90
fr 506 515 9 268 1298
fr 26.6 10.1 3.0 15.8 14.4
𝜎 19.0 15.2 0.0 21.4 18.5

Regarding types of errors, it is interesting to note that the Eslint
project contains three YAMLExceptions. These three crashes are
the only crashes within CrashJS with this type of error. Two of
these crashes (9, 31) occur because a configuration file cannot be
read. The other crash (37) occurs due to a duplicate key mapping.
All three of these crashes occur due to incorrect YAML formatting
within input data for the tests, which could provide insight into
whether an ACR tool can generate YAML. However, these crashes
could hinder an ACR tool. If an ACR tool is capable of generating
correct YAML, it is possible that these crashes would never be
found as the crashes are all parsing errors which would not occur
with correct YAML input. Regardless, these crashes have been left
in CrashJS as they could prove useful for researchers looking to
incorporate domain-specific languages (DSLs), such as YAML, into
input generation for their ACR tools.

The majority of errors in BugsJS are AssertionErrors. These er-
rors occur due to the nature of BugsJS: each crash comes from
running unit tests within a project. A significant number of the
crashes collected from BugsJS are due to changes in expected values

MSR 2024, April 2024, Lisbon, Portugal Oliver, et al.

because of changes within the codebase or dependencies. For ex-
ample, the Pencilblue-1 AssertionError occurs where it expects
application/font-woff but receives font/woff. To a developer,
it is obvious that this error arises due to an updated mimetype
representation within the codebase somewhere. Another example
of this is in the Hexo-4 crash, where a string of HTML is expected
but receives a different string of HTML. Again, to a developer, it
is reasonably clear that there has been a change within Hexo to
change the HTML generated and the test must be updated. This
crash, like the YAMLExceptions discussed before, could prove an
interesting test of whether an ACR tool can generate correct DSL
input.

Of the 71 crashes collected from GitHub, the average number
of frames for these crashes is 10.2 with a standard deviation of
3.5. The Atom project contains the most complex crashes, with
an average stack length of 12.4, while Express contains the least
complex crashes, with an average stack length of 8.8.

Table 7: GitHub Crash Statistics

Project TE SE Other Total
atom st 1 1 15 17

fr 5 10 196 211
fr 5.0 10.0 13.1 12.4
𝜎 0.0 0.0 4.5 4.7

eslint st 8 1 0 9
fr 80 10 0 90
fr 10.0 10.0 0 10.0
𝜎 0.0 0.0 0.0 0.0

express st 8 0 5 13
fr 73 0 42 115
fr 9.1 0 8.4 8.8
𝜎 3.4 0.0 4.3 3.8

http-server st 3 0 6 9
fr 30 0 56 86
fr 10.0 0 9.3 9.6
𝜎 0.0 0.0 1.1 1.0

node st 5 0 6 11
fr 48 0 42 90
fr 9.6 0 7.0 8.2
𝜎 0.5 0.0 1.8 1.9

standard st 2 1 0 3
fr 20 10 0 30
fr 10.0 10.0 0 10.0
𝜎 0.0 0.0 0.0 0.0

webpack st 5 0 4 9
fr 58 0 44 102
fr 11.6 0 11.0 11.3
𝜎 3.9 0.0 1.7 3.1

Total st 32 3 36 71
fr 314 30 380 724
fr 9.8 10.0 10.6 10.2
𝜎 2.6 0.0 4.2 3.5

The majority of errors in the GitHub dataset are TypeErrors
(32), followed by generic Errors (29), with a few other errors such

as SyntaxError and URIError. A significant number of the Type-
Errors present in the GitHub dataset are the program under test
not being able to access properties on undefined objects. For exam-
ple, the Eslint-14538 crash occurs in Eslint version 7.25.0 when
there is an incomplete variable declaration. The error given for
this crash is: TypeError: Cannot read property ’loc’ of
undefined, instead of Eslint providing a useful error message such
as identifier expected. Another common TypeError is a miss-
ing function. For example, Express-2761 has the error message
TypeError: dest.end is not a function for Express version
5.0.0-alpha.2 when attempting to use http2 as a dependency. This
function cannot be found because Express did not support http2 at
the time of 5.0.0-alpha.2. Generic errors include messages such as
Module did not self-register, no such file or directory,
and listen EADDRINUSE 0.0.0.0:8080.

On first look, it appears that SecBench.js crashes are some of
the more complex crashes within CrashJS, with an average stack
trace of 12.9 frames. However, if we dig deeper into the stack traces
present in the SecBench.js dataset, we find one crash with a stack
length of 100. If we exclude this crash, we find a mean stack length
of 7.19. The overall median of the SecBench.js dataset stack length
is 7 frames. These statistics show that, excluding the Modjs crash
with a length of 100, SecBench.js crashes are not as complex as they
first appear. The Modjs crash is so complex because the majority of
the processing for this crash is parsing. Due to the recursive nature
of parsing, the stack trace is significantly larger, as many elements
of the program being parsed must be covered.

The majority of errors in the SecBench.js dataset are generic
Errors (13), with SyntaxErrors next (3), and a single ReferenceEr-
ror last. The majority of these crashes are generic Errors due to
how crashes were extracted from SecBench.js. As these crashes are
collected from code injection vulnerabilities within SecBench.js,
the errors are collected by injecting a piece of code which throws
an Error. The SyntaxErrors occur in the Node-Rules and Under-
score vulnerabilities, where the syntax of throwing an error does
not work like in the other crashes collected. The ReferenceError
occurs in the Thenify vulnerability, where throw new Error(); is
injected as a payload. However, the error message (thrownewError
is not defined) shows the spaces within the payload are replaced
and a ReferenceError is thrown instead of an Error.

Table 8: SecBench.js Crash Statistics

Project SE Error Other Total
code-injection st 3 13 1 17

fr 17 191 7 215
fr 5.7 14.7 7 12.9
𝜎 0.9 24.7 0 21.9

The Syntest-JavaScript dataset contains the most crashes of the
datasets within CrashJS. Most of these crashes are in the Express
(86) and Moment (86) projects, with the least in the Lodash (11)
project. The complexity of the crashes within the Syntest-JavaScript
dataset are similar between the projects; JavaScript-Algorithms is
the most complex with an average of 5.6 frames per stack, while
Commander is the least complex with an average of 4.0. The overall

CrashJS: A NodeJS Benchmark for Automated Crash Reproduction MSR 2024, April 2024, Lisbon, Portugal

dataset has an average of 5.1 frames per stack with a standard
deviation of 3.4.

The majority of the crashes within the Syntest-JavaScript dataset
are TypeErrors (257). If we consider that Syntest-JavaScript crashes
are generated from the test generation tool using an evolutionary
approach for a dynamically typed language, it becomes clear why
themajority are TypeErrors. Syntest-JavaScript cannot rely on static
types to ensure the correct type of arguments are used for function
calls. This means that often incorrect types are used, resulting in
the TypeErrors represented in the Syntest-JavaScript dataset.

Table 9: Syntest-JavaScript Crash Statistics

Project TE Other Total
commander st 36 2 38

fr 145 6 151
fr 4.0 3.0 4.0
𝜎 1.5 1.0 1.5

express st 84 2 86
fr 421 11 432
fr 5.0 5.5 5.0
𝜎 2.0 0.5 1.9

javascript-algorithms st 40 14 54
fr 197 103 300
fr 4.9 7.4 5.6
𝜎 2.1 11.9 6.4

lodash st 11 0 11
fr 48 0 48
fr 4.4 0 4.4
𝜎 1.2 0.0 1.2

moment st 86 0 86
fr 462 0 462
fr 5.4 0 5.4
𝜎 2.2 0.0 2.2

Total st 257 18 275
fr 1273 120 1393
fr 5.0 6.7 5.1
𝜎 2.1 10.6 3.4

An interesting comparison between the GitHub crashes and
BugsJS crashes arises when we consider the Express dataset for
these two sources. As discussed previously, Express crashes within
the BugsJS dataset have an average of 54 frames per crash (the most
complex of CrashJS), while Express crashes within the GitHub
dataset have an average of 8.8 (the least complex for the GitHub
dataset). This is, in part, due to the BugsJS crashes using headers,
while the GitHub crashes do not. In Express the handling of headers
is complex and requires calls to multiple handlers and other func-
tions within the Express router, thus leading to the significantly
larger stack traces within the BugsJS dataset.

4.2 Program Complexity
Themeasure of program complexity we have used is the Cyclomatic
Complexity Number (CCN) for each program within CrashJS. A
CCN is calculated from a program using the Control Flow Graph

Table 10: Overall Error Statistics

Error Total
TypeError 308

Error 64
AssertionError 51
RangeError 12
SyntaxError 6

Other 12

and the formula:𝑀 = 𝐸−𝑁+2𝑃 where 𝐸 is the number of edges,𝑁 is
the number of nodes, and 𝑃 is the number of connected components
within the graph. To calculate the CCN for each crash we used the
complexity-report16 JavaScript tool. The collected CCNs give us a
measure of the complexity of each target program for each crash
within CrashJS, which, when combined with the crash complexity,
gives an overall estimate of the difficulty of reproduction for each
crash.

To give a quantitative metric for us to compare the complexities
of the datasets we use the formula:

𝐶𝑜 = (𝐹𝑝/𝐹𝑚𝑎𝑥) + (𝐶𝐶𝑁𝑝/𝐶𝐶𝑁𝑚𝑎𝑥)
Where 𝐶𝑜 is the overall complexity, 𝐹𝑝 is the average number of
frames for the project, 𝐹𝑚𝑎𝑥 is the highest average frames for all
of CrashJS (54), 𝐶𝐶𝑁𝑝 is the CCN for the project, and 𝐶𝐶𝑁𝑚𝑎𝑥 is
the highest CCN for all of CrashJS (5.2). We have used this formula
as it gives a normalised result across CrashJS with neither crash
complexity nor project complexity outweighing the other. This
allows us to make direct comparisons between projects and datasets
within CrashJS. Table 11 shows the 𝐹𝑝 ,𝐶𝑝 , and calculated𝐶𝑜 values
for all datasets within CrashJS.

Figure 1 shows the distribution of CCNs for the BugsJS dataset
within CrashJS. As can be seen, Pencilblue is the least complex
project, while Hexo is the most complex. Eslint has the largest
range of complexities, but also significantly more crashes than the
other projects, so this is to be expected. Express contains the next
most crashes and has the next widest range of complexities for the
project.

As seen in Table 11, the calculated 𝐶𝑜 values for the BugsJS
projects show Pencilblue, Eslint, and Hexo have relatively low com-
plexity scores compared to Express, although Eslint, Express, and
Hexo have similar 𝐶𝐶𝑁𝑝 scores. In this case, it is clear that the
significantly larger Express stack traces skew the complexity of the
Express crashes. Because of this, BugsJS has the highest overall 𝐶𝑜
of 0.73.

Figure 2 shows a similar spread of CCNs in the GitHub dataset
as the BugsJS dataset. However, the Webpack project has the lowest
CCNs of all projects within CrashJS. This can be seen in Figure 2
by the clustering just above 1.0. Interestingly, there is a significant
difference between the spreads of CCN for the Eslint project in the
GitHub dataset compared to the BugsJS dataset. This is likely due to
the collection methods for the GitHub dataset. As the crashes were
collected from the GitHub issue tracker for Eslint, the crashes are
clustered around similar versions, whereas the BugsJS collection
method sampled a much larger range of bugs from within GitHub.
16https://github.com/escomplex/complexity-report

MSR 2024, April 2024, Lisbon, Portugal Oliver, et al.

Figure 1: BugsJS CCN Distribution

Figure 2: GitHub Crash CCN Distribution

As seen in Table 11, the majority of projects within the GitHub
dataset have similar 𝐶𝑜 values. Interestingly, the projects with
higher 𝐹𝑝 values tend to have lower 𝐶𝐶𝑁𝑝 values and vice versa.
This seems to result in the 𝐶𝑜 values remaining similar. However,
Webpack has a significantly lower 𝐶𝐶𝑁𝑝 than all other projects,
resulting in the lowest 𝐶𝑜 value for the GitHub dataset of 0.41.
Further investigation into the possibility of a correlation between
crash complexity and program complexity found no correlation
between these in our benchmark with an R2 value of 0.012 and no
discernible shape (Figure 3).

As seen in Figure 4, there is a similar distribution of CNN values
between approximately 1 and 3. However, there are two significant
outliers in node-extend and node-serialize, with values around 5.

Figure 3: Comparison of Crash and Program Complexity

Figure 4: SecBench.js CCNs

These two outliers are the most complex CNN values in CrashJS
and could provide insight into ACR tools’ capabilities to reproduce
crashes in higher-complexity programs.

Table 11 shows that the SecBench.js dataset is the second-most
complex dataset in CrashJS with an overall complexity value of 0.72.
Only BugsJS is more complex, with a value of 0.73. However, as
these values are so similar, the results from ACR tools on these two
datasets could prove interesting considering the significant differ-
ence in the size of the datasets (90 for BugsJS, 17 for SecBench.js).

As previously discussed, all crashes for each project within the
Syntest-JavaScript dataset are the same version. This makes the
analysis of CCNs for the dataset significantly simpler. Interestingly,
the CCN for the Express project shows that the version used for
Syntest-JavaScript is one of the more complex versions as compared
to the BugsJS and GitHub datasets. Overall, this dataset has similar
CCNs to the other datasets, with a slightly higher range beginning
just under 2 and finishing just above 3.

Table 11 shows the Syntest-JavaScript dataset has the lowest
overall complexity in CrashJS with an overall𝐶𝑜 value of 0.60. This
value is only just lower than the GitHub dataset (0.61), however,
the Syntest-JavaScript dataset is significantly larger (275 crashes vs
71). As previously discussed, the majority of errors in this dataset
are TypeErrors occurring from randomly generated input data. We
believe this will also lower the complexity of this dataset, providing

CrashJS: A NodeJS Benchmark for Automated Crash Reproduction MSR 2024, April 2024, Lisbon, Portugal

Table 11: CrashJS Overall Complexity

Dataset Project 𝐹𝑝 𝐶𝐶𝑁𝑝 𝐶𝑜

BugsJS eslint 3.0 2.41 0.52
express 54 2.65 1.51
hexo 16 2.88 0.85

pencilblue 4 1.71 0.40
Overall 14.4 2.43 0.73

GitHub atom 12.4 1.74 0.56
eslint 10 2.35 0.64
express 8.8 2.71 0.68

http-server 9.6 2.95 0.75
node 8.2 2.68 0.67

standard 10 1.67 0.51
webpack 11.3 1.04 0.41
Overall 10.2 2.19 0.61

SecBench.js Overall 12.9 2.48 0.72
Syntest-JS commander 4.0 2.41 0.54

express 5.0 3.05 0.68
js-algorithms 5.6 1.93 0.47

lodash 4.4 2.91 0.64
moment 5.4 2.73 0.63
Overall 5.1 2.61 0.60

CrashJS Overall 8.01 2.50 0.63

Figure 5: Syntest-JavaScript CCNs

crashes which early-stage JavaScript ACR tools can use to under-
stand what aspects of their approaches work and how to optimise
for more complex crashes.

5 CONCLUSIONS
Currently, there are no benchmarks for Automated Crash Reproduc-
tion tools targeting JavaScript programs. Several ACR tools have
previously been created and tested for C, Java, and Python with
varying levels of benchmarks. Other benchmarks for JavaScript
include BugsJS, a collection of bugs from JavaScript programs,
SecBench.js, a collection of security vulnerabilities, and the Syntest-
JavaScript benchmark, a collection of JavaScript programs to target
for automated test generation using the Syntest-JavaScript tool.
We propose CrashJS, the first benchmark specifically for ACR
tools targeting JavaScript programs. CrashJS comprises 453 crashes

from four main sources: BugsJS, GitHub, SecBench.js, and Syntest-
JavaScript. The GitHub crashes have been collected from the is-
sue trackers of popular Node.js projects on GitHub. The other 3
datasets all leverage aspects of the BugsJS, SecBench.js, and Syntest-
JavaScript benchmarks to extract crashes for CrashJS. The crashes
collected have a variety of complexity, both in the length of stack
trace to be reproduced and the cyclomatic complexity of the target
project for the crash. We believe that CrashJS will allow for fair
comparisons between forthcoming JavaScript ACR tools and pro-
vide insight into what aspects of ACR approaches provide the most
successful reproductions of JavaScript crashes.

MSR 2024, April 2024, Lisbon, Portugal Oliver, et al.

REFERENCES
[1] 2021. Synopsys-Sponsored CISQ Research Estimates Cost of Poor Software

Quality in the US $2.08 Trillion in 2020: Many digital transformation efforts
fail due to poor software engineering practices around insufficient computing
performance, poor cybersecurity and unscalable architectures. U.S. Newswire
(2021).

[2] Leonhard Applis and Annibale Panichella. 2023. HasBugs - Handpicked Haskell
Bugs. In 2023 IEEE/ACM 20th International Conference on Mining Software Reposi-
tories (MSR). 223–227. https://doi.org/10.1109/MSR59073.2023.00040

[3] Setu Kumar Basak, Lorenzo Neil, Bradley Reaves, and Laurie Williams. 2023.
SecretBench: A Dataset of Software Secrets. In 2023 IEEE/ACM 20th International
Conference on Mining Software Repositories (MSR). 347–351. https://doi.org/10.
1109/MSR59073.2023.00053

[4] Alexandre Bergel and Ignacio Slater Muñoz. 2021. Beacon: Automated Test
Generation for Stack-Trace Reproduction using Genetic Algorithms. In 2021
IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST).
1–7. https://doi.org/10.1109/SBST52555.2021.00007

[5] Masudul Hasan Masud Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasilakis,
Michael Pradel, and Cristian-Alexandru Staicu. 2023. SecBench.js: An Executable
Security Benchmark Suite for Server-Side JavaScript. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). 1059–1070. https://doi.
org/10.1109/ICSE48619.2023.00096

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and
Applications (Portland, OR, USA). ACM Press, New York, NY, USA, 169–190.
https://doi.org/10.1145/1167473.1167488

[7] Emily Bui andHenrique Rocha. 2023. Snapshot Testing Dataset. In 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR). 558–562.
https://doi.org/10.1109/MSR59073.2023.00081

[8] Ning Chen and Sunghun Kim. 2015. STAR: Stack Trace Based Automatic Crash
Reproduction via Symbolic Execution. IEEE Transactions on Software Engineering
41, 2 (2015), 198–220. https://doi.org/10.1109/TSE.2014.2363469

[9] Natarajan Chidambaram, Alexandre Decan, and Tom Mens. 2023. A Dataset
of Bot and Human Activities in GitHub. In 2023 IEEE/ACM 20th International
Conference on Mining Software Repositories (MSR). 465–469. https://doi.org/10.
1109/MSR59073.2023.00070

[10] Md Atique Reza Chowdhury, Rabe Abdalkareem, Emad Shihab, and Bram Adams.
2022. On the Untriviality of Trivial Packages: An Empirical Study of npm
JavaScript Packages. IEEE Transactions on Software Engineering 48, 8 (2022),
2695–2708. https://doi.org/10.1109/TSE.2021.3068901

[11] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare (Eds.). 1972. Structured Programming.
Academic Press Ltd., GBR.

[12] Pouria Derakhshanfar. 2021. Carving Information Sources to Drive Search-Based
Crash Reproduction and Test Case Generation. Ph. D. Dissertation. Delft Uni-
versity of Technology. https://doi.org/10.4233/uuid:aac5f17a-63d5-45c7-9570-
3cea057cd016

[13] Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman,
and Arie van Deursen. 2020. Botsing, a Search-Based Crash Reproduction
Framework for Java. In Proceedings of the 35th IEEE/ACM International Con-
ference on Automated Software Engineering (Virtual Event, Australia) (ASE
’20). Association for Computing Machinery, New York, NY, USA, 1278–1282.
https://doi.org/10.1145/3324884.3415299

[14] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure and
its Potential Impact. Empirical Software Engineering 10, 4 (2005), 405–435.
https://doi.org/10.1007/s10664-005-3861-2

[15] Gordon Fraser and Andreas Zeller. 2010. Mutation-driven Generation of Unit
Tests and Oracles. In Proceedings of the ACM International Symposium on Software
Testing and Analysis (Trento, Italy) (ISSTA ’10). ACM, New York, NY, USA, 147–158.
https://doi.org/10.1145/1831708.1831728

[16] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Ár-
pád Beszédes, Rudolf Ferenc, and Ali Mesbah. 2021. BUGSJS: a bench-
mark and taxonomy of JavaScript bugs. Software Testing, Verification
and Reliability 31, 4 (2021), e1751. https://doi.org/10.1002/stvr.1751
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1751 e1751 stvr.1751.

[17] Mohayeminul Islam, Ajay Kumar Jha, Sarah Nadi, and Ildar Akhmetov. 2023.
PyMigBench: A Benchmark for Python Library Migration. In 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR). 511–515.
https://doi.org/10.1109/MSR59073.2023.00075

[18] Wenxin Jiang, Nicholas Synovic, Purvish Jajal, Taylor R. Schorlemmer, Arav
Tewari, Bhavesh Pareek, George K. Thiruvathukal, and James C. Davis. 2023.
PTMTorrent: A Dataset for Mining Open-source Pre-trained Model Packages.
In 2023 IEEE/ACM 20th International Conference on Mining Software Repositories

(MSR). 57–61. https://doi.org/10.1109/MSR59073.2023.00021
[19] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database

of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New
York, NY, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[20] Md Abul Kalam Azad, Nafees Iqbal, Foyzul Hassan, and Probir Roy. 2023. An
Empirical Study of High Performance Computing (HPC) Performance Bugs. In
2023 IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR). 194–206. https://doi.org/10.1109/MSR59073.2023.00037

[21] Chengjie Lu, Tao Yue, and Shaukat Ali. 2023. DeepScenario: An Open Driving
Scenario Dataset for Autonomous Driving System Testing. In 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR). 52–56. https:
//doi.org/10.1109/MSR59073.2023.00020

[22] Parvez Mahbub, Ohiduzzaman Shuvo, and Mohammad Masudur Rahman. 2023.
Defectors: A Large, Diverse Python Dataset for Defect Prediction. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
393–397. https://doi.org/10.1109/MSR59073.2023.00085

[23] Akhila Sri Manasa Venigalla and Sridhar Chimalakonda. 2023. DocMine: A
Software Documentation-Related Dataset of 950 GitHub Repositories. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
407–411. https://doi.org/10.1109/MSR59073.2023.00062

[24] Himesh Nandani, Mootez Saad, and Tushar Sharma. 2023. DACOS—A Manually
Annotated Dataset of Code Smells. In 2023 IEEE/ACM 20th International Confer-
ence on Mining Software Repositories (MSR). 446–450. https://doi.org/10.1109/
MSR59073.2023.00067

[25] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiène Tahar, and Alf Larsson.
2015. JCHARMING: A bug reproduction approach using crash traces and directed
model checking. In 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). 101–110. https://doi.org/10.1109/SANER.
2015.7081820

[26] Alexander Nicholson, Quentin Stiévenart, Arash Mazidi, and Mohammad Ghafari.
2023. Wasmizer: Curating WebAssembly-driven Projects on GitHub. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
130–141. https://doi.org/10.1109/MSR59073.2023.00031

[27] Nafiseh Nikeghbal, Amir Hossein Kargaran, Abbas Heydarnoori, and Hinrich
Schütze. 2023. GIRT-Data: Sampling GitHub Issue Report Templates. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
104–108. https://doi.org/10.1109/MSR59073.2023.00026

[28] Feifei Niu, Christoph Mayr-Dorn, Wesley K. G. Assunção, LiGuo Huang, Ji-
dong Ge, Bin Luo, and Alexander Egyed. 2023. The ABLoTS Approach for Bug
Localization: is it replicable and generalizable?. In 2023 IEEE/ACM 20th Inter-
national Conference on Mining Software Repositories (MSR). 576–587. https:
//doi.org/10.1109/MSR59073.2023.00083

[29] Frolin S Ocariza Jr, Karthik Pattabiraman, and Benjamin Zorn. 2011. JavaScript
errors in the wild: An empirical study. In 2011 IEEE 22nd International Symposium
on Software Reliability Engineering. IEEE, 100–109.

[30] Philip Oliver, Jens Dietrich, Craig Anslow, and Michael Homer. 2024. Dataset
for CrashJS: A NodeJS Benchmark for Automated Crash Reproduction. https:
//doi.org/10.5281/zenodo.10530515

[31] Simon Schneider, Tufan Özen, Michael Chen, and Riccardo Scandariato. 2023. mi-
croSecEnD: A Dataset of Security-Enriched Dataflow Diagrams for Microservice
Applications. In 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR). 125–129. https://doi.org/10.1109/MSR59073.2023.00030

[32] Mozhan Soltani, Pouria Derakhshanfar, Xavier Devroey, and Arie van Deursen.
2020. A benchmark-based evaluation of search-based crash reproduction. Empir-
ical Software Engineering 25, 1 (2020), 96–138. https://doi.org/10.1007/s10664-
019-09762-1

[33] Mozhan Soltani, Annibale Panichella, and Arie van Deursen. 2016. Evolutionary
Testing for Crash Reproduction. In 2016 IEEE/ACM 9th International Workshop on
Search-Based Software Testing (SBST) (Austin, Texas) (SBST ’16). Association for
Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1109/SBST.
2016.009

[34] Mozhan Soltani, Annibale Panichella, and Arie van Deursen. 2017. A Guided
Genetic Algorithm for Automated Crash Reproduction. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). 209–220. https://doi.
org/10.1109/ICSE.2017.27

[35] Mozhan Soltani, Annibale Panichella, and Arie van Deursen. 2020. Search-Based
Crash Reproduction and Its Impact on Debugging. IEEE Transactions on Software
Engineering 46, 12 (2020), 1294–1317. https://doi.org/10.1109/TSE.2018.2877664

[36] Murali Sridharan, Leevi Rantala, and Mika Mäntylä. 2023. PENTACET data -
23 Million Contextual Code Comments and 250,000 SATD comments. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
412–416. https://doi.org/10.1109/MSR59073.2023.00063

[37] Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. 2022. Guess
What: Test Case Generation For Javascript With Unsupervised Probabilistic Type
Inference. In Search-Based Software Engineering: 14th International Symposium,
SSBSE 2022, Singapore, November 17–18, 2022, Proceedings (Singapore, Singapore).

https://doi.org/10.1109/MSR59073.2023.00040
https://doi.org/10.1109/MSR59073.2023.00053
https://doi.org/10.1109/MSR59073.2023.00053
https://doi.org/10.1109/SBST52555.2021.00007
https://doi.org/10.1109/ICSE48619.2023.00096
https://doi.org/10.1109/ICSE48619.2023.00096
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1109/MSR59073.2023.00081
https://doi.org/10.1109/TSE.2014.2363469
https://doi.org/10.1109/MSR59073.2023.00070
https://doi.org/10.1109/MSR59073.2023.00070
https://doi.org/10.1109/TSE.2021.3068901
https://doi.org/10.4233/uuid:aac5f17a-63d5-45c7-9570-3cea057cd016
https://doi.org/10.4233/uuid:aac5f17a-63d5-45c7-9570-3cea057cd016
https://doi.org/10.1145/3324884.3415299
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1002/stvr.1751
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1751
https://doi.org/10.1109/MSR59073.2023.00075
https://doi.org/10.1109/MSR59073.2023.00021
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/MSR59073.2023.00037
https://doi.org/10.1109/MSR59073.2023.00020
https://doi.org/10.1109/MSR59073.2023.00020
https://doi.org/10.1109/MSR59073.2023.00085
https://doi.org/10.1109/MSR59073.2023.00062
https://doi.org/10.1109/MSR59073.2023.00067
https://doi.org/10.1109/MSR59073.2023.00067
https://doi.org/10.1109/SANER.2015.7081820
https://doi.org/10.1109/SANER.2015.7081820
https://doi.org/10.1109/MSR59073.2023.00031
https://doi.org/10.1109/MSR59073.2023.00026
https://doi.org/10.1109/MSR59073.2023.00083
https://doi.org/10.1109/MSR59073.2023.00083
https://doi.org/10.5281/zenodo.10530515
https://doi.org/10.5281/zenodo.10530515
https://doi.org/10.1109/MSR59073.2023.00030
https://doi.org/10.1007/s10664-019-09762-1
https://doi.org/10.1007/s10664-019-09762-1
https://doi.org/10.1109/SBST.2016.009
https://doi.org/10.1109/SBST.2016.009
https://doi.org/10.1109/ICSE.2017.27
https://doi.org/10.1109/ICSE.2017.27
https://doi.org/10.1109/TSE.2018.2877664
https://doi.org/10.1109/MSR59073.2023.00063

CrashJS: A NodeJS Benchmark for Automated Crash Reproduction MSR 2024, April 2024, Lisbon, Portugal

Springer-Verlag, Berlin, Heidelberg, 67–82. https://doi.org/10.1007/978-3-031-
21251-2_5

[38] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. The Qualitas Corpus: A Curated Col-
lection of Java Code for Empirical Studies. Proceedings - Asia-Pacific Software
Engineering Conference, APSEC, 336–345. https://doi.org/10.1109/APSEC.2010.46

[39] Catherine Tony, Markus Mutas, Nicolás E. Díaz Ferreyra, and Riccardo Scandari-
ato. 2023. LLMSecEval: A Dataset of Natural Language Prompts for Security
Evaluations. In 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR). 588–592. https://doi.org/10.1109/MSR59073.2023.00084

[40] Christoph Treude and Hideaki Hata. 2023. She Elicits Requirements and He Tests:
Software Engineering Gender Bias in Large Language Models. In 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR). 624–629.
https://doi.org/10.1109/MSR59073.2023.00088

[41] Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. 2015. Crash Reproduction via
Test Case Mutation: Let Existing Test Cases Help. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE
2015). Association for Computing Machinery, New York, NY, USA, 910–913.
https://doi.org/10.1145/2786805.2803206

[42] Yibo Yan, Seth Frey, Amy Zhang, Vladimir Filkov, and Likang Yin. 2023. GitHub
OSS Governance File Dataset. In 2023 IEEE/ACM 20th International Conference on
Mining Software Repositories (MSR). 630–634. https://doi.org/10.1109/MSR59073.
2023.00089

[43] Ahmed Zerouali, Ruben Opdebeeck, and Coen De Roover. 2023. Helm Charts for
Kubernetes Applications: Evolution, Outdatedness and Security Risks. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
523–533. https://doi.org/10.1109/MSR59073.2023.00078

https://doi.org/10.1007/978-3-031-21251-2_5
https://doi.org/10.1007/978-3-031-21251-2_5
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/MSR59073.2023.00084
https://doi.org/10.1109/MSR59073.2023.00088
https://doi.org/10.1145/2786805.2803206
https://doi.org/10.1109/MSR59073.2023.00089
https://doi.org/10.1109/MSR59073.2023.00089
https://doi.org/10.1109/MSR59073.2023.00078

	Abstract
	1 Introduction
	2 Existing Benchmarks
	2.1 Java Benchmarks
	2.2 Python Benchmarks
	2.3 JavaScript Benchmarks

	3 CrashJS
	3.1 Collection Method
	3.2 Deduplication
	3.3 Benchmark Format

	4 Analysis
	4.1 Crash Complexity
	4.2 Program Complexity

	5 Conclusions
	References

